Chemistry of the Tetraselenomolybdate Anion: Syntheses, Spectroscopic Results, and Structural Characterizations of Polynuclear Mo-**Cu**-**Se Compounds Containing Thiolate Ligands**

Maochun Hong,* Qianfeng Zhang, Rong Cao, Daxu Wu, Jiutong Chen, Wenjian Zhang, Hanqin Liu, and Jiaxi Lu

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, China

*Received May 30, 1997*⁸

In the study on the reactivity of tetraselenomolybdate, a DMF solution of $[Et_4N]_2[M_0Se_4]$ was found to react with 3 equiv of CuCl in the presence of NaS_2CNR_2 [R₂ = Et₂, C₅H₁₀, (PhCH₂)₂, Me₂] to give a series of Mo- $Cu-Se$ compounds, $[Et_4N]_2[MoCu_3Se_4(R_2NCS_2)_3]$ $(R_2 = Et_2 (1a), C_5H_{10} (1b), (PhCH_2)_2 (1c))$ and $[Et_4N]_2[MoCu_4 \text{Seq}(Me_2NCS_2)_4$ (2). Furthermore, the reaction of 2 or [Et_4N]_2 [MoSe₄(CuCN)₂] with [Et_4N]_2 [Cu(SPh)₃] in DMF/ MeCN afforded a polynuclear Mo-Cu-Se cluster compound, $[Et_4N]_4[MoCu_{10}Se_4(PhS)_{12}]$ (3). $[Et_4N]_2[MoCu_3Se_4(Et_2NCS_2)_3]$ (1a) crystallizes in the orthorhombic space group $P_2_12_12_1$ with cell dimensions *a* $\hat{A} = 12.949(3) \text{ Å}, b = 13.339(3) \text{ Å}, c = 29.744(6) \text{ Å}, V = 5137.6 \text{ Å}^3$, and $Z = 4$. Full anisotropic refinements of the structure led to convergence with a value of $R = 0.052$ ($R_w = 0.055$) for 453 variables and 6854 reflections $(F > 4.0\sigma(F))$. The [MoCu₃Se₄(Et₂NCS₂)₃]² anion in **1a** comprises three Et₂NCS₂Cu fragments linked by a slightly distorted tetrahedral MoSe4 moiety. Compound **2** crystallizes in the orthorhombic space group *Pbca* with cell constants $a = 14.600(3)$ Å, $b = 18.765(4)$ Å, $c = 37.781(8)$ Å, $V = 10351$ Å³, and $Z = 8$. Anisotropic refinements with 5328 reflections (*F* > 4.0*σ*(*F*)) and 460 parameters for all non-hydrogen atoms yielded the values of $R = 0.075$ and $R_w = 0.080$. The [MoCu₄Se₄(Me₂NCS₂)₄]²⁻ anion structure of **2**, which possesses a pseudo D_{2d} symmetry of the MoSe₄Cu₄ core and a nearly planar MoCu₄ array, consists of four Me₂NCS₂Cu fragments coordinated across four edges of the tetrahedral $[MoSe_4]^2$ moiety. The compound $[Et_4N]_4[MoCu_{10}$ Se₄(PhS)₁₂] (3) crystallizes in the tetragonal space group *I*4 with cell dimensions $a = 18.344(3)$ Å, $c = 18.368(4)$ Å, $V = 6180.9$ Å³, and $Z = 2$. A value of $R = 0.079$ ($R_w = 0.084$) for 218 parameters and 3314 observations $(F > 4.0\sigma(F))$ was obtained from anisotropic refinements of the non-hydrogen atoms. The $[{\rm MoCu}_{10}{\rm Se}_{4}{\rm (PhS)}_{12}]^{4-}$ anion structure of **3** can be described as six Cu atoms bonded across the six edges of a central MoSe₄ tetrahedron, forming an octahedral $MoSe_4Cu_6$ array, to which the other four Cu atoms are added in a tetrahedral array bridged by 12 μ -SPh ligands. The ⁹⁵Mo NMR spectra of the all compounds in DMF show a single resonance peak. Their chemical shifts are dependent on the deshielding effect from the number of the Cu atoms around Mo atom and the structures of the compounds. The ¹H NMR, IR, and electronic spectroscopic data of these compounds are also consistent with their solid-state structures.

Introduction

The chemistry of $[MS₄]^{2–} (M = Mo, W)$ anions and their related compounds has been extensively investigated owing to their relevance to biological systems, rich structural chemistry, and special reactive properties as well as potential application in nonlinear optical materials, $1-3$ whereas that of $[MSe_4]^{2-} (M)$ $=$ Mo, W) anions and their related compounds have received attention only in recent years.4 Up to the present, only a few examples of compounds containing $[MSe₄]²⁻$ unit have been known.⁵⁻⁸ Ibers has studied interactions of $[WSe_4]^{2-}$ or $[MoSe₄]²⁻$ with the coinage-metal cations $Cu⁺$, $Ag⁺$, $Au⁺$, and $Ni²⁺$ and reported successively a number of coinage-metal/ $MSe₄²⁻$ (M = Mo, W) complexes with linear, cuboidal, and planar skeletons,⁶ in which the tetraselenometalate $[MSe₄]²– (M)$ $=$ Mo, W) acts as a versatility ligand coordinating to one to four coinage-metal M' ($M' = Cu$, Ag, Au) atoms.

Our studies on the reaction system consisting of $MS₄²⁻ (M)$ = Mo, W), CuX (X = Cl and Br), and/or R_2NCS_2 ⁻ ligands

- (5) (a) Lu, Y.-J.; Ibers, J. A. *Acta Crystallogr*. **1991**, *C47*, 1600. (b) Christuk, C. C.; Ansari, M. A.; Ibers, J. A. *Angew. Chem., Int. Ed. Engl*. **1992**, *31*, 1477. (c) Ansari, M. A.; Chau, C.-N.; Mahler, C. H.; Ibers, J. A. *Inorg. Chem*. **1989**, *28*, 650.
- (6) (a) Christuk, C. C.; Ansari, M. A.; Ibers, J. A. *Inorg. Chem*. **1992**, *31*, 4365. (b) Christuk, C. C.; Ibers, J. A. *Inorg. Chem*. **1993**, *32*, 5105. (c) Salm, R. J.; Ibers, J. A. *Inorg. Chem*. **1994**, *33*, 4216. (d) Salm, R. J.; Misetic, A.; Ibers, J. A. *Inorg. Chim. Acta* **1995**, *240*, 239.
- (7) (a) Ansari, M. A.; Bollinger, J. C.; Christuk, C. C.; Ibers, J. A. *Acta Crystallogr*. **1994**, *C50*, 869. (b) Du, S.; Wu, X.; Lu, J. *Polyhedron* **1994**, *13*, 841.
- (8) (a) Mu¨ller, A.; Wienbo¨ker, U.; Penk, M. *Chimia* **1989**, *43*, 50. (b) Zhang, Q.; Hong, M.; Su, W.; Cao, R.; Liu, H. *Polyhedron* **1997**, *16*, 1433.

^X Abstract published in *Ad*V*ance ACS Abstracts,* November 15, 1997. (1) (a) Dance, I. G.; Fisher, K. *Prog. Inorg. Chem*. **1994**, *41*, 637. (b)

Krebs, B.; Henkel, G. *Angew. Chem., Int. Ed. Engl*. **1991**, *30*, 769. (c) Müller, A.; Diemann, E.; Jostes, R.; Bögge, H. *Angew. Chem.*, *Int. Ed. Engl*. **1981**, *20*, 934. (d) Sarkar, S.; Mishra, S. B. S. *Coord. Chem. Re*V. **1984**, *59*, 239. (e) Huang, Q.; Wu, X.; Sheng, T.; Wang, Q. *Inorg. Chem.* **1995**, *34*, 4931. (f) Huang, Q.; Wu, X.; Wang, Q.; Sheng, T.; Lu, J. *Angew. Chem., Int. Ed. Engl.* **1996**, *35,* 985.

^{(2) (}a) Holm, R. H.; Berg, J. M. *Acc. Chem. Res*. **1986**, *19*, 363. (b) Coucouvanis, D. *Acc. Chem. Res*. **1991**, *24*, 1. (c) Mills, C. F. *Chem. Ber*. **1979**, *15*, 212.

^{(3) (}a) Shi, S.; Ji, W.; Tang, S.; Lang, J.; Xin, X. *J. Am. Chem. Soc*. **1994**, *116*, 3615. (b) Shi, S.; Ji, W.; Lang, J.; Xin, X. J. *J. Phys. Chem*. **1994**, *98*, 3570. (c) Hou, H.; Ye, X.; Xin, X.; Liu, J.; Chen, M.; Shi, S. *Chem. Mater*. **1995**, *7*, 472.

^{(4) (}a) Ansari, M. A.; Ibers, J. A. *Coord. Chem. Re*V. **1990**, *100*, 223. (b) Kolis, J. W. *Coord. Chem. Re*V. **1990**, *105*, 195. (c) Roof, L. C.; Kolis, J. W. *Chem. Re*V. **1993**, *93*, 1037. (d) Huang, S.-P.; Kanatzidis, M. G. *Coord. Chem. Re*V. **1994**, *130*, 509. (e) Hou, H.; Xin, X.; Shi, S. *Coord. Chem. Re*V. **1996**, *153*, 25.

Figure 1. Sketches of some possible configurations of polynuclear Mo-Cu-Se molecular clusters. Configurations (a) and (b) are known, (c), (d), and (f) will be described in this work, but (e) has not been reported.

have allowed us to isolate a series of heterometallic sulfide complexes, such as $[MCu₃S₄(R₂NCS₂)₃]²⁻$ (planar complexes),⁹ $[S_2M_2Cu_4S_6(R_2NCS_2)_3]^{2-}$ (bibutterfly complexes),¹⁰ $[S_2M_2Cu_5S_6(R_2NCS_2)_3]^{2-}$ (double defective cubane clusters),¹¹ and polynuclear $[MCu₁₀S₄X₁₂]^{4–12}$ For the extension of our studies, we have recently turned our attention to the exploration of the chemistry of selenide system including $\text{MoSe}_{4}^{2-}/\text{CuCl}/$ L (L = Py, $R_2NCS_2^-$, PhS⁻). In this system, some possible configurations of polynuclear Mo-Cu-Se molecular clusters are sketched in Figure 1. The configuration (a) is a so-called cubanelike structure, which has already been prepared and structurally characterized.^{6a,8} We have recently isolated and characterized a compound of defective cubanelike $OMoSe₃Cu₃$ cluster core with mixed pyridine and chloride ligands,¹³ which belongs to configuration (b). In this paper, we wish to describe the syntheses and spectroscopic properties of a series of Mo-Cu-Se compounds containing thiolate ligands and structrues with $MoCu₃ planar$ (Figure 1c), $MoCu₄ planar$ (Figure 1d), and polynuclear $MoCu_{10}$ clusters (Figure 1f), which will expand the known structure types in the selenide system.

Experimental Section

Syntheses. All syntheses and manipulations were performed in oven-dried glassware under a purified dinitrogen atmosphere using standard Schlenk techniques. The solvents were purified by conventional methods and degassed prior to use. All elemental analyses were carried out by the Elemental Analysis Laboratory in this Institute. [Et4N]2[MoSe4] was prepared by an improvement on the literature method¹⁴ and our previous report.^{8b} $[Et_4N]_2[Cu(SPh)_3]^{15}$ and $[Et_4N]_2$ - $[MoSe_4(CuCN)_2]^{6c}$ were prepared as reported. Reagents R_2NCS_2Na $(R_2 = Me_2, Et_2, C_5H_{10}, (PhCH_2)_2)$ were synthesized from the reaction of R_2NH , NaOH, and CS_2 in water. CuCl was purchased from Beijing Hongxin Huagong Chang and used without further purification.

 $[Et_4N]_2[MoCu_3Se_4(Et_2NCS_2)_3]$ (1a). A solution of $[Et_4N]_2[MoSe_4]$ (0.17 g, 0.25 mmol) and CuCl (0.076 g, 0.75 mmol) in DMF (10 mL) was stirred for 10 min at room temperature. The color of the solution turned quickly from blue to red-brown, and some brown precipitate appeared gradually. Upon addition of a solution of $Et₂NCS₂Na$ (0.095 g, 0.55 mmol) in DMF (5 mL), the red-brown solution immediately turned dark-green and all precipitate was dissolved; the solution appeared dark red when light was shined through it. The resultant solution was stirred for about 1 h and then filtered. The filtrate was covered with a layer of $Et_2O(20 \text{ mL})$. After 1 week, dark-red crystals of **1a** suitable for X-ray crystallographic analysis were collected and washed with MeOH and Et₂O, yield 0.11 g (33.3%). Anal. Calcd for C31H70N5MoCu3Se4S6: C, 28.5; H, 5.40; N, 5.36; S, 14.7; Cu, 14.6. Found: C, 29.8; H, 6.15; N, 5.42; S, 13.9; Cu, 13.3.

[Et₄N]₂[MoCu₃Se₄(C₅H₁₀NCS₂)₃] (1b). To a slurry of CuCl (0.076) g, 0.75 mmol) and $C_5H_{10}NCS_2Na$ (0.11 g, 0.60 mmol) in DMF (10 mL) was added a solution of [Et4N]2[MoSe4] (0.17 g, 0.25 mmol) in DMF (10 mL). The mixture was stirred for 1 h at room temperature, resulting in a dark-green solution with a small amount of precipitate. After the mixture was filtered, the filtrate was added to 20 mL of $Et₂O$ to allow the precipitation of the product. This crude product was recrystallized from mixed DMF/THF (1:3) solvent to give black-red microcrystals of **1b**, which were collected and washed with MeOH and Et₂O, yield 0.10 g (29.4%). Anal. Calcd for $C_{34}H_{70}N_5MoCu_3$ -Se4S6: C, 30.4; H, 5.25; N, 5.21; S, 14.3; Cu, 14.2. Found: C, 31.1; H, 5.15; N, 5.62; S, 13.8; Cu, 13.9.

[Et4N]2[MoCu3Se4{**(PhCH2)2NCS2**}**3] (1c).** A mixture of CuCl (0.076 g, 0.75 mmol), $(PhCH₂)₂NCS₂Na$ (0.18 g, 0.60 mmol) and $[Et_4N]_2[MoSe_4]$ (0.17 g, 0.25 mmol) in DMF (20 mL) was stirred for 2 h at room temperature. After filtration, the filtrate was covered with a layer of THF (30 mL) and left at 4 °C. After several days, black needle crystals of 1c were collected and washed with MeOH and Et₂O, yield 0.14 g (32.9%). Anal. Calcd for $C_{61}H_{82}N_5MoCu_3Se_4S_6$: C, 43.6; H, 4.92; N, 4.17; S, 11.5; Cu, 11.4. Found: C, 44.3; H, 5.35; N, 5.15; S, 12.7; Cu, 10.8.

[Et4N]2[MoCu4Se4(Me2NCS2)4] (2). To a suspension of CuCl (0.081 g, 0.80 mmol) in DMF (5 mL) was added a solution of $[Et_4N]_2$ -[MoSe₄] (0.17 g, 0.25 mmol) in DMF (10 mL). After being stirred for 10 min, the reaction solution turned red-brown. A solution of $Me₂NCS₂Na$ (0.093 g, 0.65 mmol) in DMF (5 mL) was then added to the reaction solution. The red-brown solution turned dark-green gradually. After the solution was stirred for 30 min, 40 mL of $Et₂O$ was added. The resulting solution was allowed to stay for 1 day at room temperature to cause the deposition of inorganic salt which were removed by filtration. Black cubic crystals of **2** were collected and washed with MeOH and Et₂O after the filtrate was left in a refrigerator for several days, yield 0.14 g (39.2%). Anal. Calcd for C₂₈H₆₄N₆MoCu₄Se₄S₈: C, 23.9; H, 4.58; N, 5.97; S, 18.2; Cu, 18.1. Found: C, 24.4; H, 5.34; N, 5.61; S, 17.4; Cu, 18.8.

[Et4N]4[MoCu10Se4(PhS)12] (3). Method A. To a freshly prepared slurry of $[Et_4N]_2[MoSe_4(CuCN)_2]$ (0.085 g, 0.1 mmol) in CH_3CN (20 mL) was slowly added a solution of $[Et_4N]_2[Cu(SPh)_3]$ (0.98 g, 1.5

^{(9) (}a) Lei, X.; Liu, Q.; Liu, H. *Jiegou Huaxe* **1988**, *7*, 99. (b) Huang, Z.; Lei, X.; Kang, B.; Liu, J.; Liu, Q.; Hong, M.; Liu, H. *Inorg. Chim. Acta* **1990**, *169*, 25. (c) Lei, X.; Huang, Z.; Hong, M.; Liu, Q.; Liu, H. *Jiegou Huaxe* **1990**, *9*, 53. (d) Liu, J.; Lei, X.; Kang, B.; Huang, Z.; Hong, M. *Jiegou Huaxe* **1991**, *10*, 196.

⁽¹⁰⁾ Lei, X.; Hong, M.; Huang, Z.; Cao, R.; Liu, H. *Chin. J. Chem*. **1993**, *11*, 40.

^{(11) (}a) Lei, X.; Huang, Z.; Liu, Q.; Hong, M.; Liu, H. *Inorg. Chem*. **1989**, *28*, 4302. (b) Lei, X.; Huang, Z.; Liu, Q.; Hong, M.; Liu, H. *Inorg. Chim. Acta* **1989**, *164*, 119. (c) Liu, H.; Cao, R.; Lei, X.; Huang, Z.; Hong, M.; Kang, B. *J. Chem., Soc., Dalton Trans*. **1990**, 1023. (d) Cao, R.; Lei, X.; Liu, H. *Acta Crystallogr.* **1991**, *C47*, 876.

^{(12) (}a) Wu, D.; Hong, M.; Cao, R.; Liu, H. *Inorg. Chem*. **1996**, *35*, 1080. (b) Hong, M.; Wu, D.; Cao, R.; Lei, X.; Liu, H.; Lu, J. *Inorg. Chim. Acta* **1997**, *258*, 25.

⁽¹³⁾ Hong, M.; Wu, M.; Huang, X.; Jiang, F.; Cao, R.; Liu, H.; Lu, J. *Inorg. Chim. Acta* **1997**, *260*, 73.

⁽¹⁴⁾ O'Neal, S. C.; Kolis, J. W. *J. Am. Chem. Soc*. **1988**, *110*, 1971.

⁽¹⁵⁾ Garner, C. D.; Nicholson, J. R.; Clegg, W. *Inorg. Chem*. **1984**, *23*, 2148.

Table 1. Crystallographic Data for [Et₄N]₂[MoCu₃Se₄(Et₂NCS₂)₃] $(1a)$, $[Et_4N]_2[MoCu_4Se_4(Me_2NCS_2)_4]$ (2), and $[Et_4N]_4[MoCu_{10}Se_4(PhS)_{12}]$ (3)

	1a	2	3
formula			$C_{31}H_{70}Cu_3N_5S_6$ $C_{28}H_{64}Cu_4N_6S_8$ $C_{104}H_{140}Cu_{10}N_4S_{12}$
	Se ₄ Mo	Se ₄ Mo	Se ₄ Mo
fw	1307.7	1407.3	2878.2
space group	$P2_12_12_1$ (No. 19) <i>Pbca</i> (No. 61)		$I4$ (No. 82)
a, \overline{A}	12.949(3)	14.600(3)	18.344(3)
b, \check{A}	13.339(3)	18.765(4)	
c, \AA	29.744(6)	37.781(8)	18.368(4)
$V. \AA^3$	5138	10351	6181
Z	4	8	2
ρ_{calcd} , g \cdot cm ⁻³	1.69	1.81	1.55
μ , mm ⁻¹	4.57	5.02	3.20
T, K	296	296	296
λ. Å	0.710 73	0.71073	0.710 73
R^a	0.052	0.075	0.079
$R_{\rm w}{}^b$	0.055	0.080	0.084

$$
{}^{a}R = \sum ||F_{o}| - |F_{c}||/\sum |F_{o}|.{}^{b}R_{w} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2}]/\sum w|F_{o}|^{2}]^{1/2}.
$$

mmol) in DMF (15 mL). The reaction mixture was stirred for 2 h and then filtered to give a bright green filtrate, which was diffused by $Et₂O$ vapor. After 3 days black polyhedral crystals of **3** suitable for X-ray quality were collected and washed with $CH₃CN$ and $Et₂O$, yield (0.15 g, 52.1%). Anal. Calcd for C₁₀₄H₁₄₀N₄MoCu₁₀Se₄S₁₂: C, 43.4; H, 4.90; N, 1.95; S, 13.4; Cu, 22.1. Found: C, 44.9; H, 5.17; N, 1.81; S, 14.8; Cu, 21.3.

Method B. To a solution of compound **2** (0.14 g, 0.1 mmol) in DMF (10 mL) was added a solution of $[Et_4N]_2[Cu(SPh)_3]$ (0.52 g, 0.8 mmol) in DMF (10 mL) with stirring, resulting in a dark-green solution. The solution was stirred for 2 h, and then 20 mL of CH₃CN was added. After filtration, the dark green filtrate was diffused by $Et₂O$ vapor. Black polyhedral crystals were collected, washed with EtOH, and dried under vacuum to yield 0.11 g (38.4%). Anal. Found: C, 44.1; H, 4.74; N, 2.13; S, 13.8; Cu, 20.9. IR, elemental analyses, and cell constant determination showed the compound was identical to **3** prepared by method A.

Physical Measurements. Infrared spectra were recorded on an FTS-40 spectrophotometer with the use of pressed KBr pellets. Electronic absorption spectra were obtained in DMF solution on a Shimazu UV-3000 spectrophotometer. The ⁹⁵Mo and ¹H NMR spectra for all compounds were measured on a Varian Unity-500 spectrometer at 20 °C in $(CD_3)SO$ with 2 mol·dm⁻³ Na₂MoO₄ and TMS as standard, respectively.

Crystallographic Studies. Single crystals for **1a**, **2**, and **3** were carefully chosen, coated with epoxy resin, and mounted on glass fibers. Cell dimension measurements and data collections were performed on a Siemens Smart CCD diffractormeter with graphite-monochromitized Mo K α radiation at 23 \pm 1 °C. Intensity data for all crystals were obtained in the range $3.5 \le 2\theta \le 46.6^{\circ}$ by using an ω scan technique. The data reductions were performed on a silicon graphics computer station with Smart CCD software. Crystallographic data are listed in Table 1.

For the structural analyses, all calculations were performed on an HP/586 computer with SHELXL-PC program.^{16a} The structures were refined through the use of the SHELXL-93 program.^{16b} The positions of the molybdenum, selenium, and copper atoms were determined by direct methods, and successive difference electron density maps located the remaining non-hydrogen atoms. All non-hydrogen atoms were refined anisotropically. The positions of all hydrogen atoms were generated geometrically (C-H bond fixed at 0.96 Å), assigned isotropic thermal parameters, and allowed to ride on their respective parent C atoms before the final cycle of least-squares refinement. For **1a**, two carbon atoms [C(32) and C(34)] in an ethyl group of $[S_2CNEt_2]$ ⁻ were treated as disordered¹⁷ and refined isotropically and the others were

Table 2. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Coefficients ($\AA^2 \times 10^3$) for **1a**

atom	\boldsymbol{x}	y	Z	$U(\text{eq})^a$
Mo(1)	7111(1)	157(1)	1309(1)	36(1)
Se(1)	6499(1)	940(1)	644(1)	54(1)
Se(2)	6463(1)	$-1460(1)$	1352(1)	62(1)
Se(3)	6588(1)	1106(1)	1944(1)	56(1)
Se(4)	8899(1)	98(1)	1278(1)	48(1)
Cu(1)	5662(1)	$-619(1)$	743(1)	59(1)
Cu(2)	8405(1)	1075(1)	1903(1)	57(1)
Cu(3)	5967(1)	1883(1)	1280(1)	66(1)
S(1)	5007(3)	-1455(3)	116(1)	67(2)
S(2)	3757(3)	$-649(5)$	839(2)	113(2)
S(3)	9234(3)	768(3)	2631(1)	66(2)
S(4)	9435(3)	2506(3)	2040(1)	59(1)
S(5)	4255(3)	2572(3)	1291(2)	85(2)
S(6)	6187(3)	3678(3)	1211(2)	85(2)
C(1)	3819(12)	$-1373(14)$	359(5)	77(7)
C(2)	9780(10)	1901(10)	2532(5)	52(5)
C(3)	4861(12)	3685(14)	1259(7)	91(8)
N(1)	3000(11)	$-1804(12)$	190(5)	92(6)
N(2)	10448(9)	2328(10)	2812(4)	67(5)
N(3)	4362(13)	4575(13)	1263(9)	143(10)
N(4)	6788(9)	4539(11)	2753(4)	81(6)
N(5)	9471(9)	2999(11)	476(4)	68(5)
C(11)	3004(16)	-2347(16)	$-221(6)$	93(8)
C(12)	3205(20)	$-3406(22)$	$-160(9)$	180(17)
C(13)	2003(14)	-1836(20)	434(9)	141(13)
C(14)	1328(18)	$-1051(23)$	364(10)	192(20)
C(21)	10753(15)	1834(15)	3241(6)	99(9)
C(22)	10076(19)	2154(17)	3625(6)	131(11)
C(23)	10898(13)	3342(12)	2725(6)	77(7)
C(24)	11868(13)	3301(13)	2482(7)	97(8)
C(31)	4898(22)	5597(23)	1214(14)	222(25)
C(32)	5206(51)	5913(54)	785(21)	154(23)
C(32')	4555(63)	6331(64)	956(26)	204(32)
C(33)	3187(20)	4552(23)	1478(16)	203(25)
C(34)	2808(73)	5081(78)	1029(34)	203(38)
C(34')	2659(78)	4785(98)	1093(71)	194(63)
C(41)	5678(13)	4386(17)	2859(7)	110(9)
C(42)	5081(15)	3818(17)	2497(7)	108(9)
C(43)	6790(18)	5309(21)	2320(6)	139(13)
C(44)	6123(19)	6229(17)	2389(9)	156(15)
C(45)	7347(21)	3686(23)	2630(8)	181(16)
C(46)	7325(22)	2889(18)	3009(9)	174(16)
C(47)	7238(16)	5146(16)	3123(6)	107(9)
C(48)	8381(15)	5365(20)	3117(7)	139(12)
C(51)	10556(13)	3156(20)	513(6)	126(11)
C(52)	11097(15)	2464(18)	888(6)	130(11)
C(53)	8862(16)	3296(21)	885(7)	123(11)
C(54)	9046(26)	4294(26)	1016(10)	247(25)
C(55)	9228(20)	1909(21)	367(9)	150(14)
C(56)	9678(23)	1479(23)	$-40(9)$	189(19)
C(57)	9161(16)	3670(18)	83(7)	127(11)
C(58)	7943(15)	3619(21)	$-17(8)$	160(14)

^a Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized **U***ij* tensor.

refined anisotropically. The final refinement based on F_o for 6854 observations ($F > 4.0\sigma(F)$) and 453 variables led to convergence. For **2**, the final anisotropic refinement of all non-hydrogen atoms on *F*^o for 5328 observations $(F > 4.0\sigma(F))$ and 460 variables led to convergence. For **3**, one phenyl ring exhibiting disorder was fixed as an idealized rigid group. The final anisotropic refinement of all nonhydrogen atoms on F_0 for 3314 observations ($F > 4.0\sigma(F)$) and 218 variables led to convergence. Final positional parameters for **1a**, **2**, and **3** are given in Tables 2-4, respectively.

Results and Discussion

Syntheses. Generally, Mo(W)-Cu-S cluster compounds can be prepared by ligand substitution or stepwise addition

^{(16) (}a) Sheldrick, G. M. *SHELXTL/PC Users Manual*; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1990. (b) Sheldrick, G. M. SHELXTL93. Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1993.

⁽¹⁷⁾ The C(32) and C(34) atoms in **1a** were treated as disordered. The final refined values of the multiplicities are 0.523 for C(32), 0.471 for C(32′), 0.590 for C(34), and 0.421 for C(34′).

Table 3. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Coefficients ($\AA^2 \times 10^3$) for 2

atom	$\boldsymbol{\mathcal{X}}$	у	z	$U(\text{eq})^a$
Mo	9912(1)	2054(1)	3783(1)	32(1)
Se(1)	11020(1)	1877(1)	4230(1)	51(1)
Se(2)	9421(1)	945(1)	3554(1)	53(1)
Se(3)	8606(1)	2627(1)	4017(1)	54(1)
Se(4)	10560(1)	2748(1)	3323(1)	46(1)
Cu(1)	9786(2)	1749(1)	3082(1)	53(1)
Cu(2)	9762(2)	2541(1)	4462(1)	58(1)
Cu(3)	9262(2)	3338(1)	3562(1)	56(1)
Cu(4)	10665(1)	765(1)	3945(1)	54(1)
S(11)	8327(3)	2087(2)	2740(1)	53(2)
S(12)	9973(3)	1287(3)	2530(1)	65(2)
C(10)	8864(12)	1554(8)	2444(4)	56(7)
N(10)	8461(10)	1352(7)	2139(3)	58(6)
C(11)	7511(12)	1558(10)	2052(4)	80(8)
C(12)	8927(12)	916(11)	1874(4)	85(9)
S(21)	10313(3)	3653(2)	4779(1)	64(2)
S(22)	9292(3)	2420(2)	5048(1)	61(2)
C(20)	9816(11)	3219(9)	5127(4)	52(6)
N(20)	9814(10)	3501(8)	5465(3)	71(6)
C(21)	10263(14)	4180(10)	5531(5)	96(10)
C(22)	9419(16)	3111(12)	5771(4)	120(12)
S(31)	8231(3)	3864(2)	3149(1)	56(2)
S(32)	9350(3)	4604(2)	3677(1)	65(2)
C(30)	8535(11)	4663(9)	3349(4)	50(6)
N(30)	8156(9)	5270(7)	3250(3)	53(5)
C(31)	7492(14)	5298(9)	2959(4)	85(9)
C(32)	8381(13)	5926(9)	3426(5)	93(10)
S(41)	12149(3)	297(2)	3742(1)	61(2)
S(42)	10800(3)	$-349(2)$	4216(1)	54(2)
C(40)	11885(10)	$-382(7)$	4027(4)	42(6)
N(40)	12458(9)	$-895(7)$	4103(3)	50(5)
C(41)	12264(12)	$-1473(9)$	4350(5)	73(8)
C(42)	13382(11)	-906(9)	3952(5)	73(8)
N(1)	9854(10)	3652(7)	2025(3)	56(6)
C(111)	10116(14)	3509(10)	2396(4)	81(8)
C(112)	10889(16)	3977(13)	2529(6)	133(13)
C(121)	9556(15)	4396(10)	1983(6)	98(10)
C(122)	8711(15)	4633(11)	2191(5)	108(11)
C(131)	9091(14)	3151(10)	1942(5)	85(9)
C(132)	8665(16)	3178(12)	1584(5)	122(12)
C(141)	10632(15)	3536(11)	1772(5)	94(10)
C(142)	11033(16)	2782(12)	1771(6)	138(14)
N(2)	7951(9)	593(7)	4667(3)	54(5)
C(211)	8541(12)	83(10)	4699(5)	73(8)
C(212)	8084(14)	753(11)	4595(6)	106(11)
C(221)	8574(12)	$-1194(10)$	4785(4)	65(8)
C(222)	8159(13)	$-1923(11)$	4766(5)	89(9)
C(231)	7627(11)	697(9)	4295(4)	64(7)
C(232)	8342(15)	$-784(13)$	4020(5)	122(12)
C(241)	7080(12)	-565(10)	4887(5)	73(8)
C(242)	7227(15)	-482(12)	5280(5)	122(12)

^a Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized **U***ij* tensor.

reactions.9,12b,18 Similarly, tetranuclear Mo-Cu-Se compound 1a was obtained by a two-step reaction, the reaction of [Et₄N]₂-[MoSe₄] and CuCl in a 1:3 Mo:Cu ratio and the substitution of Cl^- by $R_2NCS_2^-$:

$$
[Et_4N]_2[MoSe_4] + 3CuCl \rightarrow [Et_4N]_2[MoSe_4(CuCl)_3] \quad (1)
$$

$$
[Et_4N]_2[MoSe_4(CuCl)_3] + 3R_2NCS_2Na \rightarrow
$$

$$
[Et_4N]_2[MoSe_4(CuR_2NCS_2)_3] + 3NaCl (2)
$$

1a

When $[Et_4N]_2[MoSe_4]$ reacted with CuCl in DMF solution, the

Table 4. Atomic Coordinates $(\times 10^4)$ and Equivalent Isotropic Displacement Coefficients ($\AA^2 \times 10^3$) for **3**

atom	х	у	z	$U(\text{eq})^a$
Mo	5000	5000	$\overline{0}$	45(1)
Se(1)	4043(1)	4537(1)	741(1)	53(1)
Cu(1)	5000	5000	1548(1)	62(1)
Cu(2)	4448(1)	3527(1)	$-41(1)$	63(1)
Cu(3)	4294(1)	6605(1)	1281(1)	68(1)
S(1)	4861(2)	2659(2)	788(3)	71(2)
S(2)	3474(2)	3170(2)	-799(3)	68(2)
S(3)	4590(3)	5967(3)	2271(2)	69(2)
C(11)	5308(8)	1916(7)	327(8)	69(5)
C(12)	5779	1475	729	211(17)
C(13)	6057	837	424	542(73)
C(14)	5864	639	-283	142(10)
C(15)	5393	1080	-686	127(8)
C(16)	5116	1718	-381	107(7)
C(21)	3850(10)	2568(9)	$-1469(11)$	78(8)
C(22)	3534(13)	1861(13)	$-1552(17)$	125(12)
C(23)	3838(21)	1409(16)	$-2080(26)$	172(20)
C(24)	4424(19)	1515(18)	$-2388(25)$	163(18)
C(25)	4735(13)	2270(16)	$-2403(13)$	121(11)
C(26)	4430(11)	2750(10)	$-1931(12)$	85(8)
C(31)	5394(13)	6372(15)	2727(11)	102(10)
C(32)	5395(14)	7110(19)	2744(16)	149(15)
C(33)	5956(21)	7418(18)	3151(21)	159(16)
C(34)	6529(19)	6953(21)	3540(14)	140(15)
C(35)	6429(23)	6228(23)	3434(27)	216(23)
C(36)	5905(18)	5877(16)	3007(17)	156(15)
N(1)	2400(13)	1953(12)	1185(14)	116(7)
C(1)	2546(31)	2744(31)	978(32)	252(23)
C(2)	2655(28)	1556(32)	606(30)	234(19)
C(3)	1851(42)	1896(39)	1384(43)	370(35)
C(4)	2829(38)	1563(36)	1923(34)	285(25)
C(5)	2678(27)	3263(26)	1544(30)	243(21)
C(6)	2818(81)	1130(78)	392(103)	468(118)
C(7)	1452(47)	2285(51)	753(58)	421(45)
C(8)	3542(46)	1211(38)	1966(43)	324(35)

^a Equivalent isotropic *U* defined as one-third of the trace of the orthogonalized **U***ij* tensor.

characteristic blue-purple color of $[MoSe₄]²$ disappeared rapidly and a red-brown slightly soluble Mo-Cu-Se-Cl compound was formed. Addition of $Et₂NCS₂Na$ allowed the substitution of three Cl^{-} by $Et_{2}NCNS_{2}^{-}$ and the formation of the bright green soluble compound **1a**.

Compound **1b** was prepared by the direct combination reaction of the $[MoSe₄]$ ² anion and a dithiocarbamatesubstituted Cu^+ species in DMF:

$$
CuCl + R_2NCS_2Na \rightarrow (R_2NCS_2)Cu + NaCl
$$
 (3)

$$
[Et_4N]_2[MoSe_4] + 3(R_2NCS_2)Cu \rightarrow [Et_4N]_2[MoSe_4(CuR_2NCS_2)_3]
$$
 (4)
1b

The self-assembly reaction or so called one-pot reaction was applied for the preparation of **1c**:

$$
[Et_4N]_2[MoSe_4] + 3CuCl + 3R_2NCS_2Na \rightarrow
$$

$$
[Et_4N]_2[MoSe_4(CuR_2NCS_2)_3] + 3NaCl
$$
 (5)
1c

In these reactions, all reactants were dissolved in DMF and stirred for a suitable period of time to give the final products. The elemetal analyses and spectroscopic results of **1a**-**c** confirm that the three compounds have similar structures.

When similar methods were used for the reaction of $[Et_4N]_2[MoSe_4]$, CuCl, and Me_2NCS_2Na in DMF, instead of [MoSe4(CuS2CNMe2)3]2-, a pentanuclear cluster compound **2** was isolated. As we know, the chemical properties of dithio-

^{(18) (}a) Jeannin, Y.; Se´cheresse, F.; Berne`s, S.; Robert, F. *Inorg. Chim. Acta* **1992**, *198*, 493. (b) Muller, A.; Diemann, E. *Ad*V*. Inorg. Chem*. **1987**, *31*, 89. (c) Wu, X.; Chen, P.; Du, S.; Zhu, N.; Lu, J. *J. Clust. Sci*. **1994**, *5*, 165.

carbamate complexes are susceptible to the nature of the substituents on the dithiocarbamate ligands because of the existence of resonance forms described as follows:¹⁹

The increase in the electron-donating ability of the R groups favors resonance form (II) and hence induces an increase in the electron on the sulfur atoms bound to the copper atom. Moreover, when the substitutent is a methyl group, there exits a strong super-conjugation effect from the methyl H atoms to the N=C double bond²⁰ that may result in the formation of the novel structural cluster compound. Therefore, the compound obtained from the methyl group substitutent system is different from those from the other substitutent systems.

In comparison with the synthetic system using tetrathiometalate synthon $[MS₄]²⁻ (M = Mo, W)^{9,11}$ the synthetic methods for $1a-c$ of the MoCu₃ planar structure are similar to that of $[MoCu₃S₄(R₂NCS₂)₃]²⁻ (R₂ = Et₂, C₅H₁₀)⁹$ We attempted to use $[Et_4N]_2[MoSe_4]$, CuCl, and Me_2NCS_2Na in different ratios to prepare the cluster compounds with higher nuclearity, such as the MoCu₆Se₄ compound, but failed. It was mentioned that the formation of double defective cubane compounds with $[S_2Mo_2Cu_5S_6]$ ¹¹ cores can be prepared by using two cubanelike units $[SMoS₃Cu₂]$ and $[SMoS₃Cu₃]$ as building blocks linked by two bridging Me_2NCS_2 ⁻ ligands. In the Mo-Cu-Se system, an effort has been made to use $[MoCu₃Se₄(R₂NCS₂)₃]²⁻$ as building blocks to prepared similar double defective cubane compounds with the $[Se₂Mo₂Cu₅Se₆]$ core; no matter what reaction condition was used, the products obtained were always those with MoCu₃ or MoCu₄ cores. This suggests that not all reaction chemistry of the $[MoSe₄]²⁻$ anion parallels that of the sulfide analogues $[MoS₄]^{2-}$.

Besides, thiolate ligands may play an important role in the synthetic reaction. All Cl^- ligands in the slightly soluble intermediates [MoSe₄(CuCl)₃]²⁻ were replaced by R_2NCS_2 ⁻ ligands in DMF and a series of cluster compounds with $MoCu₃$ and MoCu₄ cores and R_2NCS_2 ⁻ ligands can be isolated. Moreover, the usage of a relatively small amount of R_2NCS_2Na is necessary, because the excess R_2NCS_2 ⁻ ligands will result in the formation of $Cu(R₂NCS₂)₂$ complexes as the separable product. Therefore, inadequate R_2NCS_2 ⁻ ligand can avoid the formation of $Cu(R_2NCS_2)_2$.

In an attempt to prepare Mo-Cu-Se cluster compounds with mixed ligands of $\text{Me}_2\text{NCS}_2^-$ or CN⁻ and PhS⁻ by the reaction of $[Et_4N]_2[Cu(PhS)_3]$ and $[Et_4N]_2[(NC)CuSe_2MoSe_2Cu(CN)]$ or **2**, suprisingly, instead of simple ligand substitution, the polynuclear compound 3 with MoCu₁₀ core was obtained. It has been documented that, in the corresponding tetrathiometalate system, the cyano ligands in $[MoS₄(CuCN)₂]²⁻$ can only be displaced by PhS^- ligands.²¹ In the present system, the reaction may undergo two steps: First, the active fragment of CuSPh is released from $[Et_4N]_2[Cu(PhS)_3]$,¹⁵

$$
[Et_4N]_2[Cu(PhS)_3] \rightleftharpoons CuSPh + 2Et_4N^+ + 2PhS^-
$$
 (6)

Second, the presence of excess PhS^- induces the substitution

Table 5. Bond Lengths (Å) and Angles (deg) for **1a**

$Mo(1)-Se(1)$	2.373(2)	$Cu(1)-S(2)$	2.484(4)
$Mo(1)-Se(2)$	2.317(2)	$Cu(2)-S(3)$	2.452(4)
$Mo(1)-Se(3)$	2.373(2)	$Cu(2)-S(4)$	2.364(4)
$Mo(1)-Se(4)$	2.319(2)	$Cu(3)-S(5)$	2.400(4)
$Mo(1)-Cu(1)$	2.724(2)	$Cu(3)-S(6)$	2.420(5)
$Mo(1)-Cu(2)$	2.726(2)	$S(1) - C(1)$	1.704(16)
$Mo(1)-Cu(3)$	2.739(2)	$S(2)-C(1)$	1.725(18)
$Se(1)-Cu(1)$	2.363(2)	$S(3)-C(2)$	1.694(14)
$Se(1)-Cu(3)$	2.375(3)	$S(4)-C(2)$	1.730(14)
$Se(2)-Cu(1)$	2.368(2)	$S(5)-C(3)$	1.682(18)
$Se(3)-Cu(2)$	2.357(2)	$S(6)-C(3)$	1.722(16)
$Se(3)-Cu(3)$	2.373(3)		
$Se(4)-Cu(2)$	2.357(2)		
$Cu(1)-S(1)$	2.332(5)		
$Se(1)-Mo(1)-Se(2)$	109.5(1)	$Se(1)-Cu(1)-Se(2)$	108.2(1)
$Se(1)-Mo(1)-Se(3)$	109.5(1)	$Se(1) - Cu(1) - S(1)$	119.2(1)
$Se(2)-Mo(1)-Se(3)$	110.4(1)	$Se(2) - Cu(1) - S(1)$	122.9(1)
$Se(1)-Mo(1)-Se(4)$	108.4(1)	$Se(1)-Cu(1)-S(2)$	119.0(2)
$Se(2)-Mo(1)-Se(4)$	109.4(1)	$Se(2) - Cu(1) - S(2)$	109.8(1)
$Se(3)-Mo(1)-Se(4)$	109.5(1)	$S(1) - Cu(1) - S(2)$	73.9(2)
$Cu(1)-Mo(1)-Cu(2)$	173.9(1)	$Se(3)-Cu(2)-Se(4)$	108.8(1)
$Se(4)-Mo(1)-Cu(3)$	124.6(1)	$Se(3)-Cu(2)-S(3)$	113.2(1)
$Cu(1)-Mo(1)-Cu(3)$	85.8(1)	$Se(4)-Cu(2)-S(3)$	119.0(1)
$Cu(2)-Mo(1)-Cu(3)$	88.6(1)	$Se(3)-Cu(2)-S(4)$	122.7(1)
$Mo(1)-Se(1)-Cu(1)$	70.2(1)	$Se(4)-Cu(2)-S(4)$	115.4(1)
$Mo(1)-Se(1)-Cu(3)$	70.5(1)	$S(3)-Cu(2)-S(4)$	74.7(1)
$Cu(1)-Se(1)-Cu(3)$	103.5(1)	$Se(1) - Cu(3) - Se(3)$	109.5(1)
$Mo(1)-Se(2)-Cu(1)$	71.1(1)	$Se(1) - Cu(3) - S(5)$	118.8(2)
$Mo(1)-Se(3)-Cu(2)$	70.4(1)	$Se(3)-Cu(3)-S(5)$	118.0(2)
$Mo(1)-Se(3)-Cu(3)$	70.5(1)	$Se(1)-Cu(3)-S(6)$	115.0(2)
$Cu(2)-Se(3)-Cu(3)$	107.6(1)	$Se(3)-Cu(3)-S(6)$	117.5(2)
$Mo(1)-Se(4)-Cu(2)$	71.3(1)	$S(5)-Cu(3)-S(6)$	74.4(2)

of CN^- in $[MoSe_4(CuCN)_2]^{2-}$ or $Me_2NCS_2^-$ in 2 by PhS^- and the aggregations of $[MoSe_4(CuSPh)_n]²⁻$ (*n* = 2 or 4) and PhSCu to form the polynuclear $MoSe_4Cu_{10}$ compound. All attempts to isolate the $MoSe_4Cu_2$, $MoSe_4Cu_4$, or $MoSe_4Cu_{10}$ core cluster compounds containing PhS^- ligands by the direct reactions of $[Et_4N]_2[MSe_4]$, CuX, and NaSPh in different molar ratios have failed. The polynuclear cluster compounds $[Et_4N]_4[MCu_1_0S_4L_1_2]$ $(M = Mo, W; L = Cl, Br)¹²$ were synthesized from the reactions of $[NH_4]_2[MS_4]$, CuX, and Et₄NX in an equilibrium molar ratio in acac/DMSO mixed solvent, while trying to prepare M_0 . M_0 core cluster compounds with halide ligands by running a similar reaction was not successful.

The use of $[MoSe₄]²⁻$ as starting material has allowed access to several novel polynuclear Mo-Cu-Se cluster compounds. Although not many heterobimetallic complexes of copper(I) with tetraselenomolybdate have been prepared until now, the reactivity of $[MoSe₄]²⁻$ represents a feasible proof for the belief that such a synthetic method may provide a rich source of new transition-metal clusters containing the selenium ligand.

Structures. Crystal structures of **1a**, **2**, and **3** have been determined. All crystal structures consist of discrete $[Et_4N]^+$ cations and Mo-Cu-Se cluster anions. In all three structures, the $[Et_4N]^+$ cations have their expected structure as well as normal distances and angles, which will not be discussed further. Selected bond distances and angles for **1a**, **2**, and **3** are collected in Tables $5-7$, respectively.

The structure of the anion, $[MoCu₃Se₄(Et₂NCS₂)₃]²⁻$, in **1a** is shown in Figure 2. Although the similar structures have been seen previously in the $[MS_4Cu_3L_3]^2$ ⁻ compound (M = Mo, W; $L = Cl$, SCN, Et_2NCS_2 ,^{9,22} the current arrangement appears to

⁽²¹⁾ Acott, S. R.; Garner, C. D.; Nicholson, J. R.; Clegg, W. *J. Chem. Soc., Dalton Trans.* **1983**, 713.

⁽¹⁹⁾ Coucouvanis, D. In *Progress in Inorganic Chemistry*; Lippard, S. J., Ed.; Wiley-Interscience: New York, 1979; Vol. 26, p 301.

⁽²⁰⁾ Emeleus, H. J.; Sharp, A. G. *Ad*V*. Inorg. Chem. Radiochem.* **1980**, *23*, 211.

^{(22) (}a) Clegg, W.; Garner, C. D.; Nicholson, J. R. *Acta Crystallogr.* **1983**, *C39*, 552. (b) Potvin, C.; Manoli, J. M.; Salis, M.; Se´cheresse, F. *Inorg. Chim. Acta* **1984**, *83*, L19. (c) Manoli, J. M.; Potvin, C.; Secheresse, F.; Marzak, S. *Inorg. Chim. Acta* **1988**, *150*, 257.

Table 6. Bond Lengths (Å) and Bond Angles (deg) for **2**

$Mo-Se(1)$	2.363(2)	$Mo-Se(2)$	2.365(2)
$Mo-Se(3)$	2.362(2)	$Mo-Se(4)$	2.371(2)
$Mo-Cu(1)$	2.717(2)	$Mo-Cu(2)$	2.731(2)
$Mo-Cu(3)$	2.723(2)	$Mo-Cu(4)$	2.726(2)
$Se(1)-Cu(2)$	2.385(3)	$Se(1)-Cu(4)$	2.407(3)
$Se(2)-Cu(1)$	2.395(2)	$Se(2)-Cu(4)$	2.365(3)
$Se(3)-Cu(2)$	2.386(3)	$Se(3)-Cu(3)$	2.379(3)
$Se(4)-Cu(1)$	2.371(3)	$Se(4)-Cu(3)$	2.374(3)
$Cu(1)-S(11)$	2.572(5)	$Cu(1)-S(12)$	2.276(5)
$Cu(2)-S(21)$	2.538(5)	$Cu(2)-S(22)$	2.330(4)
$Cu(3)-S(31)$	2.381(5)	$Cu(3)-S(32)$	2.418(5)
$Cu(4)-S(41)$	2.461(5)	$Cu(4)-S(42)$	2.337(5)
$Se(1)-Mo-Se(2)$	110.3(1)	$Se(1)-Mo-Se(3)$	110.4(1)
$Se(2)-Mo-Se(3)$	107.1(1)	$Se(1)-Mo-Se(4)$	109.2(1)
$Se(2)-Mo-Se(4)$	109.6(1)	$Se(3)-Mo-Se(4)$	110.3(1)
$Cu(1)-Mo-Cu(3)$	82.2(1)	$Cu(2)-Mo-Cu(3)$	87.9(1)
$Cu(1)-Mo-Cu(4)$	93.3(1)	$Cu(2)-Mo-Cu(4)$	96.9(1)
$Cu(3)-Mo-Cu(4)$	174.3(1)	$Mo-Se(1)-Cu(2)$	70.2(1)
$Mo-Se(1)-Cu(4)$	69.7(1)	$Cu(2)-Se(1)-Cu(4)$	116.8(1)
$Mo-Se(2)-Cu(1)$	69.6(1)	$Mo-Se(2)-Cu(4)$	70.4(1)
$Cu(1)-Se(2)-Cu(4)$	112.6(1)	$Mo-Se(3)-Cu(2)$	70.2(1)
$Mo-Se(3)-Cu(3)$	70.1(1)	$Cu(2)-Se(3)-Cu(3)$	105.2(1)
$Mo-Se(4)-Cu(1)$	69.9(1)	$Mo-Se(4)-Cu(3)$	70.0(1)
$Cu(1)-Se(4)-Cu(3)$	97.7(1)	$Se(2) - Cu(1) - Se(4)$	108.6(1)
$Se(2) - Cu(1) - S(11)$	110.2(1)	$Se(4)-Cu(1)-S(11)$	113.1(1)
$Se(2)-Cu(1)-S(12)$	118.0(1)	$Se(4)-Cu(1)-S(12)$	126.6(2)
$S(11) - Cu(1) - S(12)$	74.5(2)	$Se(1)-Cu(2)-Se(3)$	108.8(1)
$Se(1)-Cu(2)-S(21)$	111.0(1)	$Se(3)-Cu(2)-S(21)$	120.1(1)
$Se(1)-Cu(2)-S(22)$	121.6(1)	$Se(3)-Cu(2)-S(22)$	117.8(2)
$S(21) - Cu(2) - S(22)$	74.0(2)	$Se(3)-Cu(3)-Se(4)$	109.6(1)
$Se(3)-Cu(3)-S(31)$	116.9(1)	$Se(4)-Cu(3)-S(31)$	116.6(1)
$Se(3)-Cu(3)-S(32)$	116.2(1)	$Se(4)-Cu(3)-S(32)$	119.0(1)
$S(31) - Cu(3) - S(32)$	75.2(2)	$Se(1)-Cu(4)-Se(2)$	108.8(1)
$Se(1) - Cu(4) - S(41)$	105.0(1)	$Se(2) - Cu(4) - S(41)$	122.2(1)
$Se(1)-Cu(4)-S(42)$	124.1(1)	$Se(2)-Cu(4)-S(42)$	117.8(1)
$S(41) - Cu(4) - S(42)$	75.1(2)		

Table 7. Bond Lengths (Å) and Angles (deg) for **3**

be the first example of a planar MoCu₃ with $[MoSe₄]²⁻$ unit and different from those with incomplete cubane $QMoSe₃Cu₃$ $(Q = 0, Se)^{13}$ and with cubane QMoSe₃Cu₃X ($Q = 0$, Se; X $=$ Cl, Br)⁸ complexes in which the O or one of Se atom acts as

Figure 2. ORTEP plot of the anion $[MoCu₃Se₄(Et₂NCS₂)₃]²⁻$ in **1a** with the ellipsoids drawn at 30% probability level.

terminal. The anion structure possesses a 2-fold axis through Mo(1) and Cu(3) atoms. The $[MoSe₄]²⁻ tetrahedral unit$ coordinates to three $Et₂NCS₂Cu$ groups from three of the six tetrahedral Se-Se edges in a nearly plane fashion and leaves the other three Se-Se edges opened. Therefore, $[MoSe₄]^{2–}$ is a slightly distorted tetrahedron. The four metal atoms Mo(1), $Cu(1)$, $Cu(2)$, and $Cu(3)$ lie approximately in a plane within 0.06 Å of deviations from the idealized MoCu₃ plane. Two types of Se atoms are present: μ_2 -Se and μ_3 -Se. The Mo- μ_3 -Se bonds (an average value of $2.373(2)$ Å) are longer than those in Mo $-\mu_2$ -Se (an average value of 2.318(2) Å). The coordination sphere of Cu atoms is a highly distorted tetrahedron consisting of two Se atoms from $[MoSe₄]²⁻$ and two S atoms from one Et_2NCS_2 ⁻ ligand with average bite angle of 74.3° in the four-membered chelate ring. The Cu-Se distances are not clearly influenced by the different Se coordination modes and are comparable with those found in $[SemoSe₃Cl(CuPPh₃)₃]^{8b}$ $[Cu-\mu_3-Se = 2.376(5)-2.426(5)$ Å] and $[OMoSe_3Cu_3Cl_3 (Py)$]²⁻¹³ [Cu- μ_3 -Se = 2.332(2)-2.396(2) Å) (see Table 8).

The structure of the anion, $[MoCu₄Se₄(Me₂NCS₂)₄]²⁻$, of 2 is shown in Figure 3. The core structure is different from that of the anion in **1a** and has no sulfur analogues found in the compounds containing the $[MoS₄]²$ unit and dialkydithiocarbamate ligands, but similar structures have been found previously in $[MoCu₄S₄L₄]²⁻$ (L = Cl, Br, SCN).²³ The anion structure comprises four $Me₂NCS₂Cu$ fragments ligating through four of six edges of the tetrahedral $[MoSe₄]²⁻$ moiety. In the MoCu4 core, both the Mo and Cu atoms are tetrahedrally coordinated, and five metal atoms are nearly coplanar with deviations of not more than 0.1 Å from the least-squares plane. Distances from the Mo atom to the four Se atoms range from 2.362(2) to 2.371(2) Å, while the Se $-Mo-$ Se angles range from 107.1(1) to 110.4(1)°. The Cu(1)-Mo-Cu(2) and Cu(3)-Mo-Cu(4) angles are $168.8(1)$ and $174.3(1)$ °, respectively; thus, the anion structure is of pseudo D_{2d} symmetry. The Cu-Se bond lengths [2.365(3)-2.407(3) Å] in **2** agree well with those in **1a** $[2.356(2)-2.374(2)$ Å], which suggests that Cu-Se distances are not affected by the coordination geometries of the Cu atoms and different dialkyldithiocarbamate ligands. The average Mo-Cu distance of 2.724(2) Å in **2** with tetrahedral coordinated Cu atoms is compatible to that (2.730(2) Å) in **1a** and longer than those with trigonal coordinated Cu atoms found in $[Se₂MoSe₂(CuCN)]²⁻$ $[2.674(1)$ Å],^{6b} $[MoSe₄(CuCN)₂]²⁻$ $[2.685(1)$ Å],^{6b} and $[OMoSe₃Cu₃Cl₃(Py)]²$ [2.667(2) and

^{(23) (}a) Clegg, W.; Scattergood, C. D.; Garner, C. D. *Acta Crystallogr.* **1987**, *C43*, 78. (b) Nicholson, J. R.; Flood, A. C.; Garner, C. D.; Clegg, W. *J. Chem. Soc., Chem. Commun.* **1983**, 119. (c) Manoli, J. M.; Potvin, C.; Sécheresse, F.; Marzak, S. *J. Chem. Soc., Chem. Commun.* **1986**, 1557.

Figure 3. ORTEP plot of the anion $[MoCu₄Se₄(Me₂NCS₂)₄]²⁻$ in 2 with the ellipsoids drawn at 30% probability level.

Figure 4. Structure of anion $[MoCu₁₀Se₄(PhS)₁₂]^{4-}$ in 3.

2.689(1) Å].¹³ These values, together with the very acute angles of Mo-Se-Cu are an indication of a possible Mo-Cu bonding interaction.

Figure 4 depicts the perspective view of the $[MoCu₁₀Se₄(PhS)₁₂]$ ⁴⁻ anion structure in **3**. Examples of related structures, $[MCu_{10}S_4X_{12}]^{4-}$ (M = Mo, W; X = Cl, Br), containing different $[MS₄]²⁻$ moieties and halide ligands are reported.¹² The structure possesses a crystallographic D_2 and pseudo T_d symmetry. The inner core is formed of a central MoSe4 tetrahedron encapsulated by six copper atoms across the six edges of an Se4 tetrahedron, quite similar to that of the $[MoS₄Cu₆Cl₉]⁵⁻ anion.²⁴ The central MoSe₄ retains the ideal$ ized geometry of free selenidomolybdate, and the six copper atoms form a regular octahedral array. Then further addition of the other four copper atoms to $[MoSe_4Cu₆]$ in tetrahedral array by $Cu-S-Cu$ bonding from four of eight $Cu₃$ faces of the $Cu₆$ octahedron led to the compound 3. The six copper atoms in the octahedral array are each in a slightly distorted

⁽²⁴⁾ Berne`s, S.; Se´cheresse, F.; Jeannin, Y. *Inorg. Chim. Acta* **1992**, *191*, 11.

Table 9. UV-Vis Electronic and IR Spectral Data*^a*

^a sh, shoulder. *^b* KBr pellets. *^c* Reference 26. *^d* Reference 1c.

tetrahedral environment formed by two Se atoms from MoSe4 and two bridge S atoms from PhS⁻, while four copper atoms of the tetrahedral array are each in triangular environment formed by three S atoms from SPh-. It can also been described that the four copper atoms in $Cu₄$ array are added from the directions of four faces of the Se4 tetrahedron, while the six copper atoms of the $Cu₆$ array are bound across the six edges of the Se4 tetrahedron. The four Mo-Se distances are equal to 2.378(2) Å, which is slightly longer than average values of 2.345(2) Å in **1a** and 2.365(2) Å in **2**. The Se-Mo-Se angles, ranging from $109.1(1)$ to $110.2(1)$ °, are compatible to that expected in an idealized tetrahedron. It is interesting to note that the Mo-Cu average bond length of 2.865(3) \AA in **3** is longer than those in the other Mo-Cu-Se compounds shown in Table 8, indicating that there are more or less metal-metal bonding interactions, which affect the ⁹⁵Mo NMR chemical shift being discussed later. In comparison with the $Cu-S_{SPh}$ distances in $[S_2MoS_2(CuSPh)]^{2-}$ [2.188(2) Å] and [MoS₄- $(CuSPh)₂$ ²⁻ [2.171(2) Å],²¹ elongation of Cu-S_{SPh} bond lengths in 3 [2.246(5)-2.358(5) Å] is due to PhS⁻ as bridging ligands. The average distance of $Cu-S_{SPh}$ [2.287(5) Å] in **3** is significantly shorter than those of $Cu-S_{dtc}$ in **1a** [2.409(5) Å] and in **2** [2.414(5) Å].

UV and IR Spectra. Data for the electronic spectra of **1ac**, **2**, and **3** are given in Table 9. The electronic absorption spectrum for each compound with R_2NCS_2 ligands shows one high-energy absorption at about 270 nm with a shoulder at about 285 nm, one strong broad peak in the 425-440 nm range, and another lower energy absorption in the 545-565 nm range. The first absorption may be attributed to an intraligand transition, and the shoulder is from the charge transfer of ligand to metal [LMCT ($S \rightarrow Cu$)] in accordance with a similar assignment in $[VS_4Cu_4(R_2NCS_2)_n(PhS)_{4-n}]$ ³⁻ (R₂ = Et, C₄H₈O; *n* = 0, 1, 2).²⁵ The strong broad peak in the range 425-445 nm can be assigned as a charge-transfer band of the type (π) Se \rightarrow (d)Mo arising from the $MoSe₄ moiety, ^{6a} which is red-shifted compared to the$ free $[MoSe₄]²⁻ anion (367 nm).²⁶ The lowest absorption band$ at about 555 nm is relatively weak and may be due to the electron transfer between $MoSe₄²⁻$ and metal Cu. Interestingly, as the four edges of the $[MoSe₄]²⁻$ anion are coordinated by a $Cu⁺$ cation, the shoulder of the broad band disappears in the spectrum of **2**. The absorption peaks of **3** at 286, 375, and 545 nm are very similar to that of $[MoS₄(PhSCu)₂]^{2-}.$ ²¹

IR absorption data for all compounds are also given in Table 9. In the low-frequency region, the $Cu-S_{dtc}$ vibrations show a broad band in the region of $333-355$ cm⁻¹; however, the Cu- S_{SPh} vibrations are present at 321 cm⁻¹ at a little lower frequency. In the $285-330$ cm⁻¹ region where ν (Mo-Se) frequencies are expected,²⁷ the Mo-Se stretching vibrations for all compounds are red-shifted compared to that of $[MoSe₄]²$ $(341 \text{ cm}^{-1})^{\text{lc}}$ owing to the coordination of Cu atoms. For the three tetranuclear compounds **1a**-**c**, two types of Mo-Se absorptions in the ranges of $295-305$ and $316-327$ cm⁻¹ are observed, of which those in the range of $314-327$ cm⁻¹ are assigned to $Mo-\mu_2$ -Se bond vibrations and those in the range of $295-305$ cm⁻¹ are due to Mo- μ_3 -Se bond vibrations. The Mo- μ_3 -Se bond vibration for 2 and the Mo- μ_4 -Se bond vibration for **3** appear as single peaks at 314 and 292 cm⁻¹, respectively.

The IR spectra in the $400-4000$ cm⁻¹ region for all compounds show bands corresponding to the $R_2NCS²⁻$ and PhS⁻ ligand fingerprint regions. Except for the $C-S$ and $C=N$ absorptions, very few changes are observed for both kinds of ligands upon complexation with copper atoms. The C-S absorptions appear in the range $950-1000$ cm⁻¹ and are redshifted by about $20-40$ cm⁻¹ from the free ligand of R₂NCS²⁻⁻²⁸ It is interesting to note that the stretching vibration of the $C=N$ bond at 1523 cm^{-1} in 2 shifts evidently to a higher frequency region than those in other compounds. This indicates an important contribution of the $C=N$ double bond affected by the masses of the alkyl substitutes.²⁹

NMR Spectra. 1H and 95Mo NMR data for **1a**-**c**, **2**, **3**, and some related compounds are listed in Table 10. The absorption peaks of the 1H NMR spectra for all the compounds are very close to those of the free ligands $[R_2NCS_2]$ ⁻ and PhS⁻, indicating that all compounds are diamagnetic and the geometric structures of the cluster cores have little influence on the proton chemical shielding of coordinated ligands. A similar result is seen in the corresponding sulfide system.^{9,30}

⁹⁵Mo NMR spectra for the $[MoS₄]^{2–} cluster system demon$ strate that the chemical shifts decrease monotonically with the addition of the CuL ($L = Cl$, Br, I, CN, PhS, R₂NCS₂) fragment to $[MoS₄]²$, e.g. each successive addition of a CuL moiety to the $[MoS₄]²$ core resulting in a decrease of the chemical shift of the molybdenum nucleus by $210-420$ ppm.³¹ However, the situation in the Mo-Cu-Se complexes is quite different. Although the ⁹⁵Mo chemical shifts for the compounds containing the $[MoSe₄]²⁻$ unit decrease as the additional CuL fragments are bound to the $[MoSe₄]²⁻$ unit, no regularity of the chemical shift decrease was observed. For instance, trinuclear compound $[MoSe₄Cu₂(PPh₃)₂]$ has a resonance absorption at about 2400 ppm,³² while the tetranuclear compounds $[MoSe_4Cu_3(R_2NCS_2)_3]^{2-}$

- (27) Mu¨ller, A.; Schmidt, K. H.; Zint, U. *Spectrochim. Acta* **1976**, *32A*, 901.
- (28) Moore, F. W.; Larson, M. L. *Inorg. Chem*. **1967**, *6*, 998.
- (29) Brown, D. A.; Glass, W. K.; Burke, M. A. *Spectrochim. Acta* **1976**, *32A*, 137.
- (30) Huang, Z.; Lei, X.; Hong, M.; Liu, H. *Inorg. Chem*. **1991,** *30*, 2990. (31) (a) Gheller, S. F.; Hambley, T. W.; Rodgers, J. R.; Brownlee, R. T. C.; O'Connor, M. J.; Snow, M. R.; Wedd, A. G. *Inorg. Chem*. **1984**,
- *23*, 2519. (b) Minelli, M.; Enemark, J. H.; Nicholson, J. R.; Garner, C. D. *Inorg. Chem*. **1984**, *23*, 4384. (c) Cao, R.; Wu, D.; Xie, X.; Hong, M.; Jiang, F.; Liu, H. *Chin. J. Magn. Reson*. **1995**, *12*, 13.
- (32) Zhang, Q.; Cao, R.; Hong, M.; Liu, H. *Inorg. Chim. Acta*, in press.

^{(25) (}a) Yang, Y.; Liu, Q.; Huang, L.; Wu, D.; Kang, B.; Lu, J. *Inorg. Chem*. **1993**, *32*, 5431. (b) Liu, Q.; Yang, Y.; Huang, L.; Wu, D.; Kang, B.; Chen, C.; Deng, Y.; Lu, J. *Inorg. Chem.* **1995**, *34*, 1884.

⁽²⁶⁾ Wardle, R. W. M.; Mahler, C. H.; Chau, C.-N.; Ibers, J. A. *Inorg. Chem*. **1988**, *27*, 2790.

Table 10. 1H NMR and 95Mo NMR Data*^a* for Related Mo-Cu-Se Compounds

	¹ H NMR, ppm ^b			95 Mo NMR ^c		
compd	$O_{\alpha-H}$	$\delta_{\beta-H}$	$O_{\nu-H}$	$O_{\rm Ph-H}$	δ , ppm	$\Delta v_{1/2}$, Hz
$[MoSe4]$ ^{2-d}					3339	≤ 10
[MoSe ₄ Cu ₃ (Et ₂ NCS ₂) ₃] ²⁻ in 1a	3.85	1.20			2086	358
$[MoSe_4Cu_3(C_5H_{10}NCS_2)_3]^{2-}$ in 1b	4.04	1.56	1.10		2052	333
[MoSe ₄ Cu ₃ {(PhCH ₂) ₂ NCS ₂ } ₃] ²⁻ in 1c	3.38			$7.04 - 7.35$	2028	324
[MoSe ₄ Cu ₄ (Me ₂ NCS ₂) ₄] ²⁻ in 2	3.36				-1.50	28
[MoSe ₄ Cu ₁₀ (PhS) ₁₂] ⁴⁻ in 3				$6.44 - 7.52$	-1.31	25
$[SeMoSe_3ClCu_3(PPh_3)_3]^e$					1301	115
$[MoSe_4{Cu(PPh_3)}$] $]$					2400	${}^{<}100$

^a Recorded at ambient temperature. *^b* In DMSO-*d*6. *^c* In DMF. *^d* In CH3CN. *^e* Reference 8b. *^f* Reference 32.

Figure 5. (a) ⁹⁵Mo NMR spectrum of **1a** in DMSO. (b) ⁹⁵Mo NMR spectrum of the sample drawn from the reaction mixture of $[Et_4N]_2$ -[MoSe4] with 3 equiv of CuCl in DMSO. (c) Addition of 3 equiv of $NaS₂CNEt₂$ to (b).

have a resonance absorption at about 2000 ppm, which have Mo nuclei less effectively deshielded than that in $[MoSe₄]$ ²⁻ by ca. 1000 and 1400 ppm, respectively. Surprisingly, the 95Mo NMR spectra of both the pentanuclear compound **2** and the polynuclear compound **3** show a sharp resonance peak (∆*ν* ≈ 25 Hz) at about -2.0 ppm. 95 Mo NMR spectra of the cubanelike $[MoSe_4Cu_3X(PPh_3)_3]$ complexes show a resonance peak at about 1300 ppm,8b of which the molybdenum nucleus has been shielded by 2100 ppm after the $[MoSe₄]²⁻$ moiety coordinates to three $(CuPPh_3)^+$ species, being much more deshielding than those in $1a-c$ with MoCu₃ planar core. All of these results demonstrate that 95Mo NMR chemical shifts are very sensitive to structural variations of the complexes in the selenide system. One possible reason can be explained as a better orbital overlap in the selenomolybdates due to the similar size of Mo and Se atoms;²⁶ thus, the Se atom would cause a greater withdrawal of electron density after the $[MoSe₄]²⁻$ entity coordinates to Cu(I) atoms to give the unusual variations of the chemical shifts as compared to the corresponding thiomolybdate and oxomolybdate derivatives. Within the three $MoSe_4Cu_3$ complexes, the differences in the ⁹⁵Mo NMR data are small, ca. 58 ppm for chemical shifts and ca. 40 Hz for line widths, indicating very small electronic influences on the ⁹⁵Mo nucleus from the outermost ligands.

For the furtherance of understanding the reactivity of the $[MoSe₄]²⁻$ anion and reaction mechanism in the present Mo-Cu-Se reaction system, the 95Mo NMR spectrum has been used to monitor several reaction processes.

Figure 5a shows the 95Mo NMR spectrum of the sample drawn from the synthetic reaction mixture for **1a**. Only one resonance peak at 1999 ppm ($\Delta \nu = 366$ Hz), which may be assigned to $[MoSe_4(CuCl)_3]^{2-}$, was observed from the reaction mixture of $[Et_4N]_2[MoSe_4]$ and CuCl in a molar ratio of 1:3 in DMF. Nearly no change of the 95Mo NMR signal was observed after the addition of the $Et₂NCS₂Na$ salt to the above

Figure 6. (a) 95Mo NMR spectrum of **3** in DMSO. (b) 95Mo NMR spectrum of 2 in DMSO. (c) 95 Mo NMR spectrum of the sample drawn from the reaction mixture of 2 and 2 equiv of $[Et_4N]_2[Cu(PhS)_3]$ in DMSO. (d) Addition of 4 equiv of $[Et_4N]_2[Cu(PhS)_3]$ to (c).

reaction solution, and the signal is independent of the reaction time. In the light of this result, it may be suggested that the $MoSe_4Cu_3$ complex is the only product in the reaction of the $[MoSe₄]²⁻ anion and CuCl in DMF, and the final product$ 1a is formed through the substitution reaction of Cl⁻ by $Et₂NCS₂⁻.$

Figure 6c shows the 95Mo NMR spectrum of the sample drawn from the reaction mixture of 2 and $[Et_4N]_2[Cu(PhS)_3]$. When 2 reacted with 2 equiv of $[Et_4N]_2[Cu(PhS)_3]$ in $DMF-$ CH₃CN, only one resonance peak at -4.33 ppm ($\Delta \nu$ < 50 Hz) was found. Further addition of 4 equiv of $[Et_4N]_2[Cu(PhS)_3]$ to the above reaction mixture gave rise to a disappearance of the signal at -4.33 ppm and appearance of a new one at -1.14 ppm ($\Delta \nu$ < 50 Hz) (Figure 6d). With reference to the ⁹⁵Mo NMR data of the MoCu₄ and MoCu₁₀ core complexes, the resonance peak at -4.33 ppm may be assigned to the center Mo atom in the $MoSe_4Cu_6$ complex and it means that the $MoSe₄Cu₆ complex may be an intermediate during the trans$ formation from the MoCu₄ to MoCu₁₀ core complexes. The 95Mo chemical shifts of these three complexes do not have obvious differences even if they are undergoing structural variations. The result may indicate that the Mo nucleus deshielding effect from four Cu atoms in the MoSe4Cu4 compound is much larger than those from three Cu atoms in the MSe_4Cu_3 compounds and has almost reached saturation. Thus, further addition of Cu atoms to the MoSe₄Cu₄ moiety led to little change of the ⁹⁵Mo NMR data. Thus, the sensitivity

of the 95Mo NMR data to subtle structural features and the saturation of the Mo nucleus shielding effect caused by the further coordination of the MoSe₄ moiety to the Cu atoms observed in the Mo-Cu-Se complexes in general are apparent from this work.

Acknowledgment. This work was supported by grants from the State Key Laboratory of Structural Chemistry, the National Science Foundations of China and Fujian Province, and the Research Laboratory of SEDC of Analytical Science for Material and Life Chemistry at Xiamen University.

Supporting Information Available: Listings of additional crystallographic details, complete bond distances and angles, anisotropic displacement parameters, and hydrogen atom positions for **1a**, **2**, and **3** (16 pages). Ordering information is given on any current masthead page.

IC9706459